Understanding Sex Differences in Autism Part 2: Neurobiology of Autism in Boys and Girls

Christine Wu Nordahl, PhD
October 18, 2014
Sex difference in prevalence rate of autism: 4 to 1 ratio

Understanding the biological differences between boys and girls with autism could lead to more effective and individualized treatments and interventions.
Outline:

1) Why sex matters

2) Sex differences in typical brain development

3) Sex differences in ASD
Sex vs Gender

Sex – biological and physiological characteristics that define males and females

Gender – socially constructed roles, behaviors, activities, and attributes that define masculine and feminine traits
Sex differences at all levels of neurobiological organization

- Gene expression in brain
- Regulation of programmed cell death
- Distribution of glial cells in brain
- Volumetric differences in brain structure
- Connectivity differences
- Functional brain activation differences
Sex differences in pharmacology: The story of Ambien

• Zolpidem clearance is lower in women than men (Greenblatt et al 2000)

• Driving simulation studies show morning impairment 8 hours after dosing – 50 ng/ml threshold

• Morning blood levels: 15% of women vs. 3% men had > 50ng/ml zolpidem blood levels

• In Jan 2013, the FDA changed guidelines making Ambien the first prescription drug with different dosing recommendations for males and females

Implications for pharmacologic treatments being developed and utilized for neurodevelopmental disorders
NIH to balance sex in cell and animal studies

Janine A. Clayton and Francis S. Collins unveil policies to ensure that preclinical research funded by the US National Institutes of Health considers females and males.

Nature, May 2014
Sex differences in diagnostic symptoms: Heart attack

Hallmark symptom – Chest pain

- Only 29% of women report chest discomfort
- 43% did not report any acute chest pain

<table>
<thead>
<tr>
<th>Before attack</th>
<th>During attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unusual fatigue (71%)</td>
<td>Shortness of breath (58%)</td>
</tr>
<tr>
<td>Sleep disturbance (48%)</td>
<td>Weakness (55%)</td>
</tr>
<tr>
<td>Shortness of breath (42%)</td>
<td>Unusual fatigue (43%)</td>
</tr>
<tr>
<td>Indigestion (39%)</td>
<td>Cold sweat (39%)</td>
</tr>
<tr>
<td>Anxiety (36%)</td>
<td>Dizziness (39%)</td>
</tr>
<tr>
<td>Heart racing (27%)</td>
<td>Nausea (36%)</td>
</tr>
<tr>
<td>Arms weak/heavy (25%)</td>
<td>Arm heaviness or weakness (35%)</td>
</tr>
<tr>
<td>Changes in thinking or memory (24%)</td>
<td>Ache in arms (32%)</td>
</tr>
<tr>
<td>Vision change (23%)</td>
<td>Heat/flushing (32%)</td>
</tr>
<tr>
<td>Loss of appetite (22%)</td>
<td>Indigestion (31%)</td>
</tr>
<tr>
<td>Hands/arms tingling (22%)</td>
<td>Pain centered high in chest (31%)</td>
</tr>
<tr>
<td>Difficulty breathing at night (19%)</td>
<td>Heart racing (23%)</td>
</tr>
</tbody>
</table>

Sex differences in diagnostic symptoms: Autism?

- 15000 twin pairs, 10-12 years
- Compared two groups of girls who scored above the clinical threshold on a rating of autistic traits: one group had a clinical diagnosis, the other did not
- Girls with a clinical diagnosis of ASD had higher levels of ID or other behavioral problems

Do girls with autism ‘fly under the radar’?

Girls less likely to receive a diagnosis of ASD (despite having high autism traits) unless there are additional problems to push them over the diagnostic threshold.
Sex differences in diagnostic symptoms: Autism?

- Adult males vs females with autism
- ADOS females exhibit less severe social communication deficits than males
- BUT – on a self report of autistic traits, females scored higher than males

Do females with autism learn to mask their difficulties?

Better adaptation/compensation in girls
‘camouflaging' or masking social deficits
Summary – Why sex matters:

Different underlying biology may require sex-specific
- diagnostic criteria
- pharmacologic treatments
- interventions
Outline:

1) Why sex matters

2) Sex differences in typical brain development

3) Sex differences in ASD
Male and female brains grow at different rates

Lenroot et al, 2007
Males and Females have different structural connectivity patterns

Males have greater **within-hemisphere** connectivity
- perception and coordinated action

Females have greater **inter-hemispheric** connectivity
- Communication between analytical and intuitive processing modes

Behavioral study (Gur et al 2012)
- males better on spatial processing, motor, and sensorimotor speed tasks
- females better on on attention, word and face memory, social cognition tasks
Sex differences in specific white matter tracts

Johnson et al, 2013
Outline:

1) Why sex matters

2) Sex differences in typical brain development

3) Sex differences in ASD

(Adapted from Werling and Geschwind 2013)
‘Female Protective Effect’

Females with ASD have more frequent and more extensive CNVs than males
(Levy et al. 2011, Gilman et al 2011, Jacquemont et al 2014)

Increasing Neuropathologic Load?
Females with ASD are under-represented in MRI research studies

- Females with ASD account for only 10% of ASD research participants in MRI studies
- Average sample size of females with ASD is 5!
The Autism Phenome Project
Autism Phenome Project

- Large scale – 300 families
- Children are recruited between 2 and 3.5 years of age
- Study includes all children with ASD with very few exclusions
- Both boys and girls are included
- Age-matched typically developing children serve as controls
- Longitudinal design

AIM: identify different subgroups (phenotypes) of Autism

Do girls have a distinct neural phenotype from boys with ASD?
APP Summary

Visit 1: Diagnostic Confirmation, Cognitive Testing
Visit 2: Language Assessment, Imitation, Handedness
Visit 3: Medical Exam, 3-D Photograph, Vitals Measurement and Blood Draw
Visit 4: Nighttime MRI
Visit 5: EEG/ERP

- Behavior and cognition
- Brain structure and function
- Immunological function
- Genetics
Child-friendly scanning environment

Before

After
MRI Protocol

Brain structure
- Volumetric
- Cortical folding patterns
- Cortical thickness and surface area

Connectivity
- diffusion-weighted imaging
- resting state functional connectivity
APP sample to date

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Age (months)</th>
<th>DQ</th>
<th>ADOS severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD male</td>
<td>155</td>
<td>37.6 (5.9)</td>
<td>63.5 (21.4)</td>
<td>7.9 (1.7)</td>
</tr>
<tr>
<td>ASD female</td>
<td>34</td>
<td>40.0 (7.4)</td>
<td>67.2 (23.1)</td>
<td>7.5 (1.9)</td>
</tr>
<tr>
<td>TD males</td>
<td>59</td>
<td>35.6 (4.9)</td>
<td>105.4 (12.1)</td>
<td>--</td>
</tr>
<tr>
<td>TD females</td>
<td>31</td>
<td>36.0 (5.4)</td>
<td>109.0 (10.5)</td>
<td>--</td>
</tr>
</tbody>
</table>

Females are still under-represented but, the sample size is larger than most studies.
Neuropathology of Autism: What is known?

Abnormal trajectory of brain growth

Head circumference studies

![Graph showing growth of head circumference measurements in male infants with autistic disorder by age.](chart1)

- CDC Norms
- 90th Percentile
- 50th Percentile
- 10th Percentile

MRI studies

![MRI image and percent difference graph showing total brain.](chart2)

Amaral et al. 2008, TINS

Courchesne 2003 JAMA
Abnormal brain enlargement in early childhood: Do we see it in young girls with autism?

Head circumference studies

MRI studies

Campbell et al 2014

Nordahl et al 2011

Zwaigenbaum et al 2014
New study targets females with ASD to increase sample size

<table>
<thead>
<tr>
<th></th>
<th>APP</th>
<th>GAIN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD male</td>
<td>155</td>
<td>--</td>
<td>155</td>
</tr>
<tr>
<td>ASD female</td>
<td>34</td>
<td>90</td>
<td>124</td>
</tr>
<tr>
<td>TD males</td>
<td>59</td>
<td>--</td>
<td>59</td>
</tr>
<tr>
<td>TD females</td>
<td>31</td>
<td>30</td>
<td>62</td>
</tr>
</tbody>
</table>
Eligibility

• Girls between the ages of 2 to 3-1/2 at the time of the first visit
• Have a diagnosis of autism spectrum disorder or typical development

What can families expect?

• Comprehensive behavioral assessment
• Brain imaging
• Medical history
• Blood draw

For more information about the GAIN Study, please contact:
Michelle Huynh, Research Study Coordinator:
(916) 703-0410 or
michelle.huynh@ucdmc.ucdavis.edu
Conclusions

Sex matters!

Brains differ in typical brain development and likely in autism as well

In order to develop the most appropriate treatments and interventions for ALL individuals with autism, we must strive to understand how the underlying biology may be different.

Future Directions

- Need for large sex-balanced cohorts
- Exploring other biological sex differences in autism: genetics, immunology
- Are there multiple neural phenotypes in females with ASD?
Acknowledgements

APP Team
David Amaral
Sally Rogers
Sally Ozonoff
Lou Ann Barnett
Susan Rumberg
Kateri Ross
Lesley Deprey
Parisa Shoja
Greg Young
Cristina Dang
Lisa Cochran
Cynthia Zierhut

APP Immune Team
Paul Ashwood
Judy Van de Water

APP Genetics Team
Boryana Stamova
Frank Sharp

GAIN/APP MRI Team
Deana Li
Michelle Huynh
Ryan Johnson
Sarah Liston
Carolyn McCormick
Christy Rossi
Robert Scholz
Sarvenaz Sepehri
Mark Shen
Charu Subramanian

Funding
NIMH
MIND Institute

The MIND Institute