Adapting Social & Sensory Environments in the Classroom, Clinic and Community for Children with Autism:

Adapting the Sensory Environment at the Dentist

The HELP Group Summit
Leah Stein Duker, PhD, OTR/L
October 15, 2016
Acknowledgments

• National Institute of Dental and Craniofacial Research Planning and Pilot Data Grant – Sensory Adapted Dental Environments to Enhance Oral Care in Children with Autism Spectrum Disorders (1R34DE022263-01; PI, Cermak)

• Division of Occupational Science and Occupational Therapy at the Herman Ostrow School of Dentistry at the University of Southern California

• Children’s Hospital Los Angeles

• The National Center for Advancing Translational Science (NCATS) of the U.S. National Institutes of Health (KL2TR001854)
Oral Care

• Integral to total health and function
 – Eating
 – Speech
 – Sleep
 – Work and/or school attendance
 – Self-esteem
 – Overall quality of life
 – Risk factor for: edentulism, cardiovascular disease and respiratory disease
 – Associated with pneumonia & chronic kidney disease
Children with special health care needs are almost twice as likely to have unmet oral health care needs than children without disabilities.
Why ASD: Additional Risk Factors

• Co-occurring disorders
 – E.g., seizure disorder, chronic GI problems, medications

• Damaging oral habits
 – E.g., bruxism, pica, self-stimulating and self-injurious behaviors

• Dietary habits
 – E.g., bottle use, limited diets, food as rewards, feeding difficulties

• Inadequate oral care
 – Difficulty with completing oral care independently, difficulty with cooperation in the home and dental office, often cannot communicate tooth pain or discomfort verbally

• Characteristics of the ASD population
 – E.g., difficulty with changes in routine, behavior difficulties, sensory sensitivities
Sensory Sensitivities

HYPOTHESIS:

Regular Dental Environment

Sensory Over-responsivity

Anxiety

Negative Behavioral Responses

Sensory Adapted Dental Environment

Decreased Sensory Over-responsivity
Study Hypotheses

1. Child with ASD and, to a lesser extent, TD children will exhibit less behavioral distress, physiological distress, pain, and sensory discomfort during cleanings in the sensory adapted dental environment (SADE) as compared to the regular dental environment (RDE).

2. The SADE will be more cost-effective as evidenced by a shorter duration for dental cleaning, fewer staff for restraint, and reduced need for anesthesia in the SADE condition compared to the RDE.
Sensory Adapted Dental Environments (The SADE Study)

Children with ASD aged 6-12 years

- Dental Cleaning: RDE
- Dental Cleaning: SADE

Typically developing children aged 6-12 years

- Dental Cleaning: RDE
- Dental Cleaning: SADE

Key Outcome Variables

- Cooperation and anxiety (parent, child & dentist report)
- Pain intensity
- Distress behaviors
- Electrodermal activity
- Cost-savings
 - Time to complete cleaning
 - Need for sedation

Recruitment Randomization Experimental Manipulation (within subjects) Key Outcome Variables
SADE Intervention

• **Visual**
 – No fluorescent lights
 – Use of headlamp directed into child’s mouth
 – Moving projection on ceiling (Snoezelen)

• **Auditory**
 – Soothing nature & piano music

• **Tactile**
 – Weighted vest (X-ray vest)
 – Deep pressure (butterfly)
Outcome Measures

• “Physiological Distress”
 – Electrodermal Activity (EDA): sympathetic nervous system activation
 • Skin conductance level; Frequency of non-specific skin conductance responses

• “Behavioral Stress”
 – Dentist-report measures of uncooperative behavior and anxiety
 • Anxiety & Cooperation Scale; Frankl Scale
 – Researcher-coded measure of distress behaviors
 • Children’s Dental Behavior Rating Scale (CDBRS)
 • Number of hands required to restrain child

• Perception of Pain
 – Child report measure of pain intensity (Faces Pain Scale-Revised)

• Dental Sensory Sensitivity Scale
 – Child report measure of “bother” of sensory features in office

• Cost Effectiveness
 – Duration of dental cleaning; Number of hands required to restrain child; Need for pharmacological methods
Outcome Measures

- **Physiological Distress**
 - Electrodermal Activity (EDA): sympathetic nervous system activation
 - Skin conductance level; Frequency of non-specific skin conductance responses

- **Behavioral Stress**
 - Dentist-report measures of uncooperative behavior and anxiety
 - Anxiety & Cooperation Scale; Frankl Scale
 - Researcher-coded measure of distress behaviors
 - Children's Dental Behavior Rating Scale (CDBRS)
 - Number of hands required to restrain child

- **Perception of Pain**
 - Child report measure of pain intensity (Faces Pain Scale-Revised)
 - Dental Sensory Sensitivity Scale

- **Cost Effectiveness**
 - Duration of dental cleaning; Number of hands required to restrain child; Need for pharmacological methods

Diagram Notes

1. The EDA sensors (wires) attach to the two disposable electrodes located on the subject's fingers (thenar and hypothenar eminences of the palm for a child-sized hand).

2. EDA sensors (wires) connect to an amplifier/transmitter unit placed next to the subject.

3. One cable is used to connect the amplifier/transmitter unit to the receiver.

4. The receiver is connected directly to the MP150 system which contains the software and hardware required for EDA data acquisition and analysis (including the analysis software AcqKnowledge).

5. One cable is used to connect the MP150 system to the computer.
Participants

• N=44 (n=22 ASD, n=22 TD)
 – No significant difference: age, ethnicity, race, maternal/paternal education status.
 – Significantly different: gender, communication ability, sensory processing, general anxiety, dental anxiety (all p’s ≤.01).
 – ASD group diagnoses confirmed by ADOS.
Pilot Results

• Overt Behavioral Distress
 – Outcomes were in the expected direction
 • Less behavioral distress in the SADE vs. the RDE, as measured by the Anxiety & Cooperation Scale, Frankl Scale, and CDBRS

• Physiological Distress
 – Outcomes were in the expected direction
 • Less physiological distress in the SADE vs. the RDE, as measured by EDA
 • Both SCL & NS-SCR frequency were lower in the RDE as compared to the SADE (p’s ≤ .06)
 – (SCL) ASD group: d= 0.6-0.7; TD group: d= 0.4-0.5
 – (NS-SCR) ASD group: d= 0.3-0.5; TD group: d= 0.3-0.4
VIDEO
Child with ASD - EDA Example

![Graph showing skin conductance level (μS) over time (min) with two lines representing RDE and SADE.](image-url)
TD Child - EDA Example
Results – Hypothesis 2
Cost-effectiveness in SADE > RDE

<table>
<thead>
<tr>
<th>Construct</th>
<th>ASD Group</th>
<th>TD Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacological Methods</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Number of Restraining Hands</td>
<td>0.42</td>
<td>--</td>
</tr>
<tr>
<td>Duration of Cleaning</td>
<td>0.80</td>
<td>0.78</td>
</tr>
</tbody>
</table>

- Mean difference 5-7 minutes for both groups, opposite of the hypothesized direction
Sensory Adapted Dental Environments to Enhance Oral Care in Children (the SADE-2 Study)

- Funded by the National Institute of Dental and Craniofacial Research (NIDCR)
- Five-year study
- n=184 children with ASD

Current Research

SADE Environment ➔ Physiological Anxiety ➔ Negative Responses
 Perception of Pain
 Distress Behavior
 Sensory Discomfort ➔ Quality of Care & Cost Implications
 Thoroughness of cleaning
 Pharmacological methods
 Protective Stabilization
 Number of Personnel
Discussion / Conclusions

• Enhancing oral care is critical for children with special needs.

• The SADE intervention shows promising results.

• Findings highlight the potential for OTs to be part of an interdisciplinary team in oral health.
For More Information...

- **Contact us:**
 - sade2@usc.edu
 - 323-442-2206 (English & Spanish)
 - 323-442-1864 (English only)

- **Research Articles:**

Thank you!

Questions?